MAT4701 Voluntary assignment 1

Can be handed in for correction on the groups March 12.

Problem 1

Let
$$t_i = \frac{i}{n}$$
, $i = 0, 1, ..., n$, i.e., $\Delta t_i = \frac{1}{n}$.

a) For $n \in \mathbb{N}$ compute

$$F(n) = E\left[\sum_{i,j=0}^{n-1} B_{t_i} (B_{t_{i+1}} - B_{t_i}) B_{t_j} (B_{t_{j+1}} - B_{t_j})\right]$$

- b) Simplify the answer in a) using $\sum_{k=1}^{N} k = \frac{N(N+1)}{2}$ and compute $\lim_{n\to\infty} F(n)$.
- c) Explain the result in b) in light of the Itô isometry.

Problem 2

- a) Use the formula $E[e^{\alpha B_t}] = e^{\frac{1}{2}\alpha^2 t}$, that is valid for all α in \mathbb{C} , and standard trigonometric formulas to compute
- i) $E[\cos(\alpha B_t)]$
- ii) $E[\sin(\alpha B_t)]$ iii) $E[\cos^2(\alpha B_t)]$ iv) $E[\sin^2(\alpha B_t)]$
- b) Assume that $t \geq s$. Use a) to compute $E[\cos(B_t)\cos(B_s)]$. Hint: Use a trigonometric formula and independence of increments.
- c) Use b) to compute $E[(\int_0^t \cos(B_s)ds)^2]$.

Hint: For any reasonable function f, $(\int_0^t f(s)ds)^2 = 2 \int_0^t \int_0^u f(u)f(v)dvdu$.

Problem 3

Compute
$$\mathbb{E}[\int_0^t B_s dB_s \cdot \int_0^t B_s^2 dB_s]$$

Problem 4

Let $t \geq s$ and compute $E[(B_s + \sin(B_s))e^{2B_t}|\mathcal{F}_s]$.

Problem 5

Let
$$Z_t = e^{\int_0^t B_s dB_s - \frac{1}{2} \int_0^t B_s^2 ds}$$
.

- a) Prove that $dZ_t = Z_t \cdot B_t dB_t$ and use this to compute $E[Z_t]$.
- b) Prove that if $t \ge 0$, then $|Z_t|^2 \le e^{B_t^2 t}$ for all ω .
- c) Use the result in b) to prove that if $0 \le t < \frac{1}{2}$, then $\mathrm{E}[Z_t^2 B_t^2] < \infty$. Hint: B_t is Gaussian.
- d) Why do we need to prove an inequality like the one in c), and what can we conclude from that?

1