MAT4701 Voluntary assignment 1

Can be handed in for correction on the groups March 12.

Problem 1

Let $t_{i}=\frac{i}{n}, i=0,1, \ldots, n$, i.e., $\Delta t_{i}=\frac{1}{n}$.
a) For $n \in \mathbb{N}$ compute

$$
F(n)=\mathrm{E}\left[\sum_{i, j=0}^{n-1} B_{t_{i}}\left(B_{t_{i+1}}-B_{t_{i}}\right) B_{t_{j}}\left(B_{t_{j+1}}-B_{t_{j}}\right)\right]
$$

b) Simplify the answer in a) using $\sum_{k=1}^{N} k=\frac{N(N+1)}{2}$ and compute $\lim _{n \rightarrow \infty} F(n)$.
c) Explain the result in b) in light of the Itô isometry.

Problem 2

a) Use the formula $\mathrm{E}\left[e^{\alpha B_{t}}\right]=e^{\frac{1}{2} \alpha^{2} t}$, that is valid for all α in \mathbb{C}, and standard trigonometric formulas to compute
i) $\mathrm{E}\left[\cos \left(\alpha B_{t}\right)\right]$
ii) $\mathrm{E}\left[\sin \left(\alpha B_{t}\right)\right]$
iii) $\mathrm{E}\left[\cos ^{2}\left(\alpha B_{t}\right)\right]$
iv) $\mathrm{E}\left[\sin ^{2}\left(\alpha B_{t}\right)\right]$
b) Assume that $t \geq s$. Use a) to compute $\mathrm{E}\left[\cos \left(B_{t}\right) \cos \left(B_{s}\right)\right]$. Hint: Use a trigonometric formula and independence of increments.
c) Use b) to compute $\mathrm{E}\left[\left(\int_{0}^{t} \cos \left(B_{s}\right) d s\right)^{2}\right]$.

Hint: For any reasonable function $f,\left(\int_{0}^{t} f(s) d s\right)^{2}=2 \int_{0}^{t} \int_{0}^{u} f(u) f(v) d v d u$.

Problem 3

Compute $\mathrm{E}\left[\int_{0}^{t} B_{s} d B_{s} \cdot \int_{0}^{t} B_{s}^{2} d B_{s}\right]$

Problem 4

Let $t \geq s$ and compute $\mathrm{E}\left[\left(B_{s}+\sin \left(B_{s}\right)\right) e^{2 B_{t}} \mid \mathcal{F}_{s}\right]$.

Problem 5

Let $Z_{t}=e^{\int_{0}^{t} B_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} B_{s}^{2} d s}$.
a) Prove that $d Z_{t}=Z_{t} \cdot B_{t} d B_{t}$ and use this to compute $\mathrm{E}\left[Z_{t}\right]$.
b) Prove that if $t \geq 0$, then $\left|Z_{t}\right|^{2} \leq e^{B_{t}^{2}-t} \quad$ for all ω.
c) Use the result in b) to prove that if $0 \leq t<\frac{1}{2}$, then $\mathrm{E}\left[Z_{t}^{2} B_{t}^{2}\right]<\infty$. Hint: B_{t} is Gaussian.
d) Why do we need to prove an inequality like the one in c), and what can we conclude from that?

